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The study of nonequilibrium solvation with a dielectric continuum model requires splitting the electric
polarization into two terms characterized by different relaxation times. There exist various schemes to perform
this partition. We show that contrary to what had previously been indicated, the two most commonly used
partition schemes, Pekar and Brady and Carr, yield the same value for the total reaction field and for the
nonequilibrium free energy whenever one assumes a linear response regime. The confusion appears because
in the older Pekar partition the part of the fast polarization in equilibrium with the nuclear polarization is
included in the slow component.

Introduction

The use of dielectric continuum models in the study of
electron transitions or charge-transfer processes has a long
history. A classic description, in terms of dielectric constants,
of the solvatochromic shift was first given by Lippert,1 Ooshika,2

Bayliss,3 and McRae.3,4 These authors consider a classic dipole
inside a spherical cavity immersed in a continuum dielectric.
Later developments have included the consideration of higher
multipole moments5 or of cavities of arbitrary symmetry.6 In
recent years, models that combine a quantum description of the
solute with a classical description of the solvent in terms of
dielectric models have also been widely used.5-10 The main
advantage of these models is that, because of their simplicity,
they permit one to perform quantum mechanical self-consistent
field (SCF) molecular orbital calculations for molecules in
solution in exactly the same way as for molecules in vacuo or
in the gas phase.

The fast movement of the electrons of the solute that occurs
during an electron transition requires a dynamical treatment of
solvation. It is then convenient to split the solvent polarization
into two terms characterized by very different relaxation times.
One component, associated with the movement of the solvent
electrons, is considered to always be in equilibrium with the
solute charge distribution. The other, associated with the
movement of the solute nucleus, remains fixed during electron
transitions. The faster component is usually referred to as
electronic, optical, or noninertial polarization, while the slow
component is known as nuclear, inertial, or orientational
polarization. Although more general partitions7 have been
proposed, this division of the dielectric polarization into two
components is in general enough to obtain an adequate
description of the phenomena of electron transition.

Despite their widespread use, the scheme to follow in the
division of the polarization into different contributions is not
clear. In fact, as remarked by Klamt8 or Cossi and Barone,7

different approaches leading to different physical pictures exist
and are still used. Most of the initial work on solvatochromic
shift was based on the so-called Pekar partition. As is well-
known, in equilibrium solvation the total response of the
dielectric (inertial plus noninertial components) to the field

generated by a dipole inside a spherical cavity is given as a
function of the reaction field factor,g(ε), that, in the Onsager11

model, takes the form

whereε is the static dielectric constant anda is the radius of
the cavity that contains the solute molecule. In the Pekar
partition one supposes that the electronic component of the
reaction field is related tog(εopt), whereεopt is the dielectric
constant at optical frequencies, which is related ton2, the square
of the refraction index,εopt ) n2. The inertial component is then
calculated as the difference between the total and the optical
response. Brady and Carr12 criticize this model and propose a
new partition in which it is the total solvent dielectric suscep-
tibility, ø ) (ε - 1)/4π, and hence the polarization that is split
into two termsø ) øfast + øslow whereøfast ) (n2 - 1)/4π and
øslow ) (ε - n2)/4π. A detailed description of this partition and
its use in the study of solvatochromic shifts can be found in
Aguilar et al.,6 Klamt,8 and more recently, Cossi and Barone.7

The aim of this present paper is to show that, when correctly
used, the two partitions are equivalent and yield the same value
of the experimental observables. We first will show that,
assuming as valid a linear response regime, the two models
provide exactly the same total reaction field, although obviously
they predict different values for the fast and slow components.
The differences between the two models appears because the
Pekar partition includes in the slow component not only the
contribution due to the nucleus movement but also the part of
the electron component that is in equilibrium with the nuclear
polarization. Next, we will study the solvatochromic shift. Also
in this case the two models predict the same value. The
confusion appears when one tries to use a determined partition
with an unsuitable free energy expression. Each partition has
to be used with a different expression for the nonequilibrium
free energy. For the sake of clarity, we will limit the discussion
to the case of a dipole in a spherical cavity, although the
conclusions can be easily extended to the case of higher
multipoles moments.

g(ε) )
2(ε - 1)
2ε + 1

1

a3
(1)
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The Reaction Field

We begin by defining our model. We assume a point dipole,
µb0, inside a spherical cavity of radiusa surrounded by a
continuum dielectric characterized by the value of the static
dielectric constant,ε, and the square of the refractive index,n.
As a consequence of the electron transition, the dipole moment
changes fromµb0 to µb. We assume that the electronic (fast) part
of the dielectric polarization is able to adjust instantaneously
to the excitation. On the contrary, the inertial (slow) part has to
be kept fixed during the electron transition and hence is in
equilibrium with the value of the dipole moment of the solute
in the ground state.

The Onsager reaction field in the ground state isRB0 ) g(ε)µb0.
The Pekar partition calculates the contribution of the slow
component as the difference between the responses of the
dielectric when this is characterized by the dielectric constant
or by the refractive index,RBslow ) [g(ε) - g(n2)]µb0. The fast
component is assumed to be in equilibrium with the solute
charge distribution in the excited stateRBfast ) g(n2)µb. Hence,
the total reaction field in the excited state just after the transition
is

The Brady and Carr12 partition splits the polarization vector into
two terms. In the ground state the ratio between the slow and
the total components isPslow/P ) øslow/ø ) (ε - n2)/(ε - 1).
The same relationship holds for charges induced on the cavity
surface and hence for the reaction field

As one can see, the value of the slow component of the reaction
field differs clearly from the value obtained with the Pekar
partition. For instance, if one takes a dielectric withε ) 78 and
n2 ) 2, the Pekar partition yields to a value of 0.58µb0/a3 while
the Brady and Carr partition yields 0.97µb0/a3.

To obtain the contribution of the fast component and the total
reaction field in the excited state just after the electron transition,
we have to solve Laplace’s equation by assuming that the
dielectric response is characterized by the refractive index and
that in the cavity surface we already have a charge distribution,
σslow, due to the slow component of the polarization. The
boundary condition that the system has to verify is13b

whereV1 andV2 are the electrostatic potential outside and inside
the sphere, respectively.

Aguilar et al.6 give the solution to this problem for the case
of the reaction potential of an arbitrary charge distribution and
a spherical cavity:

whereEl
m(F) ) (l - |m|)!/(l + |m|)!∫F(r) rnPl

m(cosϑ)e-imæ dr3

are the multipole moments that represent the solute charge

distribution. For the case of a dipolel ) 1, and given thatRB(r)
) -gradB V(r), we obtain

One sees that, in this model, there exist two contributions to
the fast component: The first is the response of the electrons
of the dielectric to the solute charge distribution, and the second
is the response to the surface charge originated by the slow
component of the electric polarization. It is in this last term
where the two models, Pekar and Brady and Carr, differ. In the
Pekar model, the part of the fast polarization in equilibrium
with the nuclear polarization, the last term in eq 6, is considered
to be a part of the slow response. We denote this term asRBfast(s).
For the dielectric taken as example (ε )78 andn2 ) 2) the
value of this term is not negligible:RBfast(s) ) 0.39 µb0/a3

In a linear response model, the two terms in eq 6 are
independent of each other; i.e.,RBfast(s) is not affected by the
change in the solute charge distribution that follows the
transition, and hence its value is the same in the ground and
excited states. Because of this, the two models yield the same
value for the reaction field. In fact, if we add (3) and (6) and
rearrange the terms, we obtain the prediction of the Brady and
Carr partition for the total reaction field in the excited state:

which, as one sees, coincides with the value predicted by the
Pekar model, eq 2. In summary, the two models yield the same
value for the reaction field. The confusion appears because they
use the same words, slow and fast, for contributions that are
different.

Free Energy

To obtain the solvatochromic shift, it is necessary to calculate
the difference between the free energies of the ground and
excited states. In the ground state the dielectric is in an
equilibrium situation. It is not necessary to split the polarization
into its components and the solvation free energy is simply-1/
2g(ε)µb0

2. On the contrary, in the excited state it is a nonequi-
librium situation. This problem was solved by Marcus13 for the
related problem of electron-transfer reactions. We shall use here
the expressions proposed by Aguilar et al.6 for the case of a
solute in a cavity of arbitrary shape. The following expression
was deduced by using the Brady and Carr partition and hence
is only valid for this particular case

Here, V(r) is the total reaction potential in the excited state
characterized by a solute charge distribution,F, Vslow(r) is the
slow component of the reaction potential, which is calculated
in equilibrium with the solute charge distribution of the ground
state,F0, andσfast,0 andσfast are the surface charges associated

RBfast ) g(n2)µb +
2(n2 - 1)

2n2 + 1
RBslow )

g(n2)µb +
4(n2 - 1)(ε - n2)

(2n2 + 1)(2ε + 1)

1

a3
µb0 (6)

RB ) g(n2)µb +
6(ε - n2)

(2ε + 1)(2n2 + 1)

1

a3
µ0 )

g(n2)µb + [g(ε) - g(n2)]µb0 (7)

∆G ) 1
2∫V(r) F(r) dr3 - 1

2∫Vslow(r)[F0(r) - F(r)] dr3 -

1
2∫Vslow[σfast,0- σfast] dr2 (8)

RB ) RBslow + RBfast ) [g(ε) - g(n2)]µb0 + g(n2) µb (2)

RBslow ) ε - n2

ε - 1
RB0 ) ε - n2

ε - 1
g(ε)µb0 )

2(ε - n2)
2ε + 1

1

a3
µb0 (3)

n2(∂V1

∂r ) ) (∂V2

∂r ) - 4πσslow (4)

Vfast(r) ) -∑
l
∑
m [(l + 1)(1 - n2)

l + n2(l + 1)
El

m(F) -

(l + 1)2(1 - n2)(ε - n2)

[l + n2(l + 1)] [l + ε(l + 1)]
El

m(F0)] rn

a2l+1
Pl

m(cosϑ)eimæ (5)
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to the fast component of the polarization in the ground and
excited states, respectively.

For the case of a dipole in a spherical cavity, we obtain the
following values for the different integrals (see Appendix):

Summing these three terms gives the final expression for the
free energy of the excited state just after the electron transition:

The second term on the right-hand side (rhs) is usually known
as the reorganization energy.14

In the case of the Pekar partition and due to the different
meaning of the termsVslow, σfast,0, andσfast, eq 8 cannot be used.
In this case, and in order to obtain an expression for the
nonequilibrium free energy, we shall follow Newton and
Friedman,15 who define a reversible path connecting the ground
and excited states:

where at an intermediate stage in the charging process, one has

and

Whenθ ) 0, we obtain the reaction field of the ground state
and, whenθ ) 1, the reaction field of the excited state, eq 2.

Substituting eq 15 into eq 13, we obtain

If we add and subtract from this expression the term1/2g(ε)µb2

and we rearrange terms, we obtain

which is identical to eq 12.

Summary and Discussion

We have compared two different schemes for the separation
of the electric polarization of a dielectric into two components,
one associated with the slow response and the other with the
fast response. The first scheme, known as the Pekar partition,
is based on the separation of the reaction field into one

component associated with the dielectric constant and another
to the square of the refractive index. The second scheme also
splits the dielectric susceptibility into two terms but yields
expressions for the two components of the reaction field that
differ from those obtained with the Pekar partition.

Two types of mistake are common. The first is to use the
Pekar partition to obtain the slow component but the condition
contour given by eq 4 to obtain the fast component. This
procedure is not correct. In the Pekar partition the fast
component is calculated as the response of the dielectric in
equilibrium only with the solute charge distribution but never
with the surface charge associated with the slow component.
The consequence of this mistake is that theRBfast(s) term is
included twice.

The second type of mistake is to use the Pekar partition
together with the free energy expression given by eq 8. The
meaning (and magnitude) of the terms slow and fast in eq 8 is
different from that in the Pekar partition. This confusion of
terminology can lead to incorrect values of the solvatochromic
shift (an example of the numerical errors associated with this
mistake can be found in ref 7, where the authors compare the
values obtained by using the same expression for the free energy
but two different partition schemes).

In sum, when properly used, both partition schemes provide
exactly the same value for the total reaction field and for the
nonequilibrium free energy, but only if the dielectric response
is linear. The equivalence between the two models breaks down
when the dielectric behavior is nonlinear. For the nonlinear
regime one of the assumptions of the Pekar partition (that the
value of the termRfast(s) is independent of the solute charge
distribution) is not valid and hence the Pekar model can yield
incorrect results. In this case the use of the Brady and Carr
partition is compulsory.

Appendix: Nonequilibrium Free Energy

The first integral is immediate

For the second integral we have

To solve the third integral, it is convenient to perform the
following transformation

1
2∫V(r) F(r) dr3 ) - 1

2
g(ε)µb2 - 1

2
[g(ε) - g(n2)]µbµb0 (9)

- 1
2∫Vslow(r)[F0(r) - F(r)] dr3 )

1
2

2(ε - n2)

(2ε + 1)
1

a3
µb0

2 - 1
2

2(ε - n2)

(2ε + 1)
1

a3
µb0µb (10)

- 1
2∫Vslow[σfast,0- σfast] dr2 )

- 1
2

2(ε - n2)
2ε + 1

g(n2)µb0(µb0 - µb) (11)

∆G ) - 1
2
g(ε)µb2 + 1

2
[g(ε) - g(n2)](µb - µb0)

2 (12)

∆G ) - 1
2
g(ε)µb0

2 - ∫0

1
(µb - µb0)RB(θ) dθ (13)

µb(θ) ) µb0 + θ(µb - µb0) (14)

RB(θ) ) g(ε)µb0 + g(n2)θ(µb - µb0) (15)

∆G ) - 1
2
g(ε)µb0 - g(ε)µb0(µb - µb0) - 1

2
g(n2)(µb - µb0)

2

(16)

∆G ) - 1
2
g(ε)µb2 + 1

2
[g(ε) - g(n2)](µb - µb0)

2 (17)

1

2
∫V(r) F(r) dr3 )

-
1

2
∑
m

2(n2 - 1)

(2n2 + 1)

µm

a3
∫rP1

m(cosθ)eimæF dr3 -

6(ε - n2)

(2ε + 1)(2n2 + 1)
∑
m

µ0,m

a3
∫rP1

m(cosθ)eimæF dr3 )

-
1

2
g(ε)µb2 -

1

2
[g(ε) - g(n2)]µbµb0 (18)

-
1

2
∫Vslow(r)[F0(r) - F(r)] dr3 )

1

2

2(ε - n2)

(2ε + 1)
∑
m

µ0,m

a3
∫rP1

m(cosϑ)eimæ(F0 - F) dr3 )

1

2

2(ε - n2)

(2ε + 1)

1

a3
µb0(µb0 - µb) (19)
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whereσslow is

Vfast can be obtained from eq 5. The same is true forVfast,0 if
we assume that in this caseF ) F0. Putting all these terms
together and integrating, we obtain the result given by eq 11.
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